Применены: определение перпендикулярности прямой к плоскости, теорема о пересечении двух параллельных плоскостей третьей плоскостью, теорема Пифагора
Ответ:
2
Объяснение:
Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника то такие треугольники равны)
Отметь мое решение лучшим пожалуйста)))
Дана наклонная призма АВСА₁В₁С₁.
Треугольник АВС - прямоугольный равнобедренный, АВ=ВС=7.
Плоскость (АСС₁А₁) перпендикулярна плоскости АВС.
Проведём А₁К перпендикулярно АС, СМ параллельно А₁К,
СМ перпендикуляр к АС и ВС перпендикуляр к АС, значит угол МСВ- линейный угол двугоранного угла между плоскостями АСС₁А и АВС.
Угол МСВ=90⁰
,
АС перпендикуляр к ВС, АК- проекция АА₁ , по теореме о трех перпендикулярах АА₁ перпендикуляр к ВС.
Значит и СС₁ перпендикуляр в ВС. Четырехугольник ВВ₁С₁С- прямоугольник. Его площадь равна 56. Катет ВС=7, значит боковые ребра призмы 8
7*8=56
Из прямоугольного треугольника АА₁К зная угол А₁АК=45⁰ ( по условию) найдем высоту А₁К=4√2
V=S·H=1/2 АС·ВС·А₁К=1/2·7·7·4√2=98√2 кв ед.
Хз, чувак. Спиши у соседа, и напиши что ты 1 вариант.
Обозначения. Для внешних касательных точки касания А и В ("сверху"), А1 и В1 ("снизу"), внутренняя касательная пересекает внешние в точках К (c прямой АВ) и K1 (с прямой А1В1). С - "верхняя" точка касания внутренней касательной, С1 - "нижняя".
Получается вот что - одной окружности (ну, пусть слева на чертеже) касательные касаются в точках А, А1(это внешние) и С1 (это - внутренняя, как бы ниже линии центров), а другой (которая справа) - в точках В, В1(внешние) и С (внутренняя, выше линии центров). Точка К1 лежит ниже линии центров (и "слева"), и К1А1 = К1С1; точка К лежит выше линии центров (и "справа"), КВ = КС.
СС1 = КС1 - КС = КА - КС = АВ - КВ - КС = АВ - 2*КС.
СС1 = К1С - К1С1 = К1В1 - К1С1 = А1В1 - К1С1 - А1К1 = А1В1 - 2*К1С1;
Но АВ = А1В1, поэтому К1С1 = КС;
АВ = КС1 + КВ = КК1 - К1С1 + КС = КК1, ч.т.д.